Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biopharm Drug Dispos ; 39(7): 354-368, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30021059

RESUMO

The accuracy of the provisional estimation of the Biopharmaceutics Classification System (BCS) is heavily influenced by the permeability measurement. In this study, several theoretical and experimental models currently employed for BCS permeability classification have been analysed. The experimental models included the in situ rat intestinal perfusion, the ex vivo rat intestinal tissue in an Ussing chamber, the MDCK and Caco-2 cell monolayers, and the parallel artificial membrane (PAMPA). The theoretical models included the octanol-water partition coefficient and the QSPeR (Quantitative Structure-Permeability Relationship) model recently developed. For model validation, a dataset of 43 compounds has been recompiled and analysed for the suitability for BCS permeability classification in comparison with the use of human intestinal absorption and oral bioavailability values. The application of the final model, based on a majority voting system showed a 95.3% accuracy for predicting human permeability. Finally, the present approach was applied to the 186 orally administered drugs in immediate-release dosage forms of the WHO Model List of Essential Medicines. The percentages of the drugs that were provisionally classified as BCS Class I and Class III was 62.4%, suggesting that in vivo bioequivalence (BE) may potentially be assured with a less expensive and more easily implemented in vitro dissolution test, ensuring the efficiency and quality of pharmaceutical products. The results of the current study improve the accuracy of provisional BCS classification by combining different permeability models.


Assuntos
Medicamentos Essenciais/classificação , Medicamentos Essenciais/metabolismo , Mucosa Intestinal/metabolismo , Modelos Biológicos , Animais , Biofarmácia , Células CACO-2 , Cães , Humanos , Técnicas In Vitro , Células Madin Darby de Rim Canino , Permeabilidade , Ratos , Organização Mundial da Saúde
2.
AAPS PharmSciTech ; 12(2): 637-49, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21560022

RESUMO

The effects of spray-drying process and acidic solvent system on physicochemical properties of chitosan salts were investigated. Chitosan used in spray dryings was obtained by deacetylation of chitin from lobster (Panulirus argus) origin. The chitosan acid salts were prepared in a laboratory-scale spray drier, and organic acetic acid, lactic acid, and citric acid were used as solvents in the process. The physicochemical properties of chitosan salts were investigated by means of solid-state CP-MAS (13)C nuclear magnetic resonance (NMR), X-ray powder diffraction (XRPD), differential scanning calorimetry, and Fourier transform infrared spectrometry (FTIR) and near-infrared spectroscopy. The morphology of spray-dried chitosan acid salts showed tendency toward higher sphericity when higher temperatures in a spray-drying process were applied. Analysis by XRPD indicated that all chitosan acid salts studied were amorphous solids. Solid-state (13)C NMR spectra revealed the evidence of the partial conversion of chitosan acetate to chitin and also conversion to acetyl amide form which appears to be dependent on the spray-drying process. The FTIR spectra suggested that the organic acids applied in spray drying may interact with chitosan at the position of amino groups to form chitosan salts. With all three chitosan acid salts, the FTIR bands at 1,597 and 1,615 cm(-1) were diminished suggesting that -NH groups are protonated. The FTIR spectra of all chitosan acid salts exhibited ammonium and carboxylate bands at 1,630 and 1,556 cm(-1), respectively. In conclusion, spray drying is a potential method of preparing acid salts from chitosan obtained by deacetylation of chitin from lobster (P. argus) origin.


Assuntos
Ácido Acético/química , Química Farmacêutica/métodos , Quitosana/química , Ácido Láctico/química , Ácido Acético/normas , Animais , Química Farmacêutica/normas , Quitosana/isolamento & purificação , Quitosana/normas , Ácido Láctico/normas , Palinuridae , Tamanho da Partícula , Sais/química , Sais/normas
3.
Eur J Pharm Biopharm ; 58(1): 69-76, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15207539

RESUMO

The short-term stability and the water sorption of films prepared from binary mixtures of chitosan and native amylose maize starch (Hylon VII) were evaluated using free films. The aqueous polymer solutions of the free films contained 2% (w/w) film formers, glycerol, or erythritol as a plasticizer, as well as acetic acid (1%) and purified water. Characterization of the present fresh and conditioned film formers and free films was done using X-ray diffraction analysis, determination of moisture sorption isotherms, and near infrared spectroscopy. The results indicated that clear changes in the crystallinity of the films are evident within a 3-month period of storage, and the changes in the solid state are dependent on the plasticizer and storage conditions. When stored at ambient conditions for 3 months, the aqueous chitosan-amylose starch films plasticized with erythritol exhibited a partly crystalline structure. This was as a result of sugar recrystallisation due to the high hydrogen bonding. The respective films plasticized with glycerol and stored at 25 degrees C/60% relative humidity (RH) or at 40 degrees C/75% RH remained flexible and amorphous for at least 3 months. The water sorption of the free films greatly increased as a function of storage time at 75 and 95% RH. The second derivative spectra of starting material and free films were capable of distinguishing the internal water from the free water after storage at different relative humidities. Free water resulted in a separate band at a lower wavelength (1903 nm) in comparison to the structured absorbed water band at 1920 nm, in the case of films the free water resulted in a band around 1900 nm.


Assuntos
Amilose/química , Quitosana/química , Plastificantes/química , Polímeros/química , Amilose/análise , Quitosana/análise , Estabilidade de Medicamentos , Umidade/normas , Plastificantes/análise , Polímeros/análise , Amido/análise , Amido/química
4.
AAPS PharmSciTech ; 5(1): E15, 2004 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15198536

RESUMO

The film-forming ability of chitosan and binary mixtures of chitosan and native amylose corn starch (Hylon VII) was evaluated with free films prepared by a casting/solvent evaporation method. Unplasticized and plasticized free chitosan films in aqueous acetic acid and respective films containing a mixture of chitosan and native amylose starch in acetic acid were prepared. Glycerol, sorbitol, and i-erythritol were used as plasticizers. Solid-state and mechanical properties of the films were studied by powder x-ray diffractometry (XPRD), differential scanning calorimetry (DSC), and a materials testing machine. The films composed of a mixture of chitosan and native amylose starch in acetic acid were clear and colorless. A plasticizer concentration of 20% wt/wt (of the polymer weight) was sufficient to obtain flexible films with all samples tested. X-ray diffraction patterns and DSC thermograms indicated an amorphous state of the films independent of the type of plasticizer used. In conclusion, incorporation of native amylose corn starch into chitosan films improves the consistency and the mechanical properties of the films.


Assuntos
Amilose/química , Quitina/análogos & derivados , Quitina/química , Quitosana , Eritritol/química , Peso Molecular , Amido/química , Água , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...